Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
1.
Front Immunol ; 15: 1331474, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38650939

RESUMO

Malaria remains a global health challenge, necessitating the development of effective vaccines. The RTS,S vaccination prevents Plasmodium falciparum (Pf) malaria but is ineffective against Plasmodium vivax (Pv) disease. Herein, we evaluated the murine immunogenicity of a recombinant PvCSP incorporating prevalent polymorphisms, adjuvanted with Alhydrogel or Poly I:C. Both formulations induced prolonged IgG responses, with IgG1 dominance by the Alhydrogel group and high titers of all IgG isotypes by the Poly I:C counterpart. Poly I:C-adjuvanted vaccination increased splenic plasma cells, terminally-differentiated memory cells (MBCs), and precursors relative to the Alhydrogel-combined immunization. Splenic B-cells from Poly I:C-vaccinated mice revealed an antibody-secreting cell- and MBC-differentiating gene expression profile. Biological processes such as antibody folding and secretion were highlighted by the Poly I:C-adjuvanted vaccination. These findings underscore the potential of Poly I:C to strengthen immune responses against Pv malaria.

2.
Einstein (Sao Paulo) ; 22: eAO0931, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38567917

RESUMO

OBJECTIVE: This study aimed to present a temporal and spatial analysis of the 2018 measles outbreak in Brazil, particularly in the metropolitan city of Manaus in the Amazon region, and further introduce a new tool for spatial analysis. METHODS: We analyzed the geographical data of the residences of over 7,000 individuals with measles in Manaus during 2018 and 2019. Spatial and temporal analyses were conducted to characterize various aspects of the outbreak, including the onset and prevalence of symptoms, demographics, and vaccination status. A visualization tool was also constructed to display the geographical and temporal distribution of the reported measles cases. RESULTS: Approximately 95% of the included participants had not received vaccination within the past decade. Heterogeneity was observed across all facets of the outbreak, including variations in the incubation period and symptom presentation. Age distribution exhibited two peaks, occurring at one year and 18 years of age, and the potential implications of this distribution on predictive analysis were discussed. Additionally, spatial analysis revealed that areas with the highest case densities tended to have the lowest standard of living. CONCLUSION: Understanding the spatial and temporal spread of measles outbreaks provides insights for decision-making regarding measures to mitigate future epidemics.


Assuntos
Sarampo , Humanos , Lactente , Brasil/epidemiologia , Sarampo/epidemiologia , Surtos de Doenças , Vacinação , Análise Espacial
3.
Einstein (Säo Paulo) ; 22: eAO0931, 2024. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1550238

RESUMO

ABSTRACT Objective: This study aimed to present a temporal and spatial analysis of the 2018 measles outbreak in Brazil, particularly in the metropolitan city of Manaus in the Amazon region, and further introduce a new tool for spatial analysis. Methods: We analyzed the geographical data of the residences of over 7,000 individuals with measles in Manaus during 2018 and 2019. Spatial and temporal analyses were conducted to characterize various aspects of the outbreak, including the onset and prevalence of symptoms, demographics, and vaccination status. A visualization tool was also constructed to display the geographical and temporal distribution of the reported measles cases. Results: Approximately 95% of the included participants had not received vaccination within the past decade. Heterogeneity was observed across all facets of the outbreak, including variations in the incubation period and symptom presentation. Age distribution exhibited two peaks, occurring at one year and 18 years of age, and the potential implications of this distribution on predictive analysis were discussed. Additionally, spatial analysis revealed that areas with the highest case densities tended to have the lowest standard of living. Conclusion: Understanding the spatial and temporal spread of measles outbreaks provides insights for decision-making regarding measures to mitigate future epidemics.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38028896

RESUMO

Despite the considerable advances in the last years, the health information systems for health surveillance still need to overcome some critical issues so that epidemic detection can be performed in real time. For instance, despite the efforts of the Brazilian Ministry of Health (MoH) to make COVID-19 data available during the pandemic, delays due to data entry and data availability posed an additional threat to disease monitoring. Here, we propose a complementary approach by using electronic medical records (EMRs) data collected in real time to generate a system to enable insights from the local health surveillance system personnel. As a proof of concept, we assessed data from São Caetano do Sul City (SCS), São Paulo, Brazil. We used the "fever" term as a sentinel event. Regular expression techniques were applied to detect febrile diseases. Other specific terms such as "malaria," "dengue," "Zika," or any infectious disease were included in the dictionary and mapped to "fever." Additionally, after "tokenizing," we assessed the frequencies of most mentioned terms when fever was also mentioned in the patient complaint. The findings allowed us to detect the overlapping outbreaks of both COVID-19 Omicron BA.1 subvariant and Influenza A virus, which were confirmed by our team by analyzing data from private laboratories and another COVID-19 public monitoring system. Timely information generated from EMRs will be a very important tool to the decision-making process as well as research in epidemiology. Quality and security on the data produced is of paramount importance to allow the use by health surveillance systems.

5.
Front Immunol ; 14: 1259197, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38022684

RESUMO

Introduction: The rVSVDG-ZEBOV-GP (Ervebo®) vaccine is both immunogenic and protective against Ebola. However, the vaccine can cause a broad range of transient adverse reactions, from headache to arthritis. Identifying baseline reactogenicity signatures can advance personalized vaccinology and increase our understanding of the molecular factors associated with such adverse events. Methods: In this study, we developed a machine learning approach to integrate prevaccination gene expression data with adverse events that occurred within 14 days post-vaccination. Results and Discussion: We analyzed the expression of 144 genes across 343 blood samples collected from participants of 4 phase I clinical trial cohorts: Switzerland, USA, Gabon, and Kenya. Our machine learning approach revealed 22 key genes associated with adverse events such as local reactions, fatigue, headache, myalgia, fever, chills, arthralgia, nausea, and arthritis, providing insights into potential biological mechanisms linked to vaccine reactogenicity.


Assuntos
Artrite , Vacinas contra Ebola , Ebolavirus , Doença pelo Vírus Ebola , Humanos , Anticorpos Antivirais , Artrite/etiologia , Vacinas contra Ebola/efeitos adversos , Ebolavirus/genética , Cefaleia , Vacinação/efeitos adversos , Vacinação/métodos , Ensaios Clínicos Fase I como Assunto
6.
Proc Natl Acad Sci U S A ; 120(41): e2221985120, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37782797

RESUMO

CD8 T cells play an essential role in antitumor immunity and chronic viral infections. Recent findings have delineated the differentiation pathway of CD8 T cells in accordance with the progenitor-progeny relationship of TCF1+ stem-like and Tim-3+TCF1- more differentiated T cells. Here, we investigated the characteristics of stem-like and differentiated CD8 T cells isolated from several murine tumor models and human lung cancer samples in terms of phenotypic and transcriptional features as well as their location compared to virus-specific CD8 T cells in the chronically lymphocytic choriomeningitis virus (LCMV)-infected mice. We found that CD8 tumor-infiltrating lymphocytes (TILs) in both murine and human tumors exhibited overall similar phenotypic and transcriptional characteristics compared to corresponding subsets in the spleen of chronically infected mice. Moreover, stem-like CD8 TILs exclusively responded and produced effector-like progeny CD8 T cells in vivo after antigenic restimulation, confirming their lineage relationship and the proliferative potential of stem-like CD8 TILs. Most importantly, similar to the preferential localization of PD-1+ stem-like CD8 T cells in T cell zones of the spleen during chronic LCMV infection, we found that the PD-1+ stem-like CD8 TILs in lung cancer samples are preferentially located not in the tumor parenchyma but in tertiary lymphoid structures (TLSs). The stem-like CD8 T cells are present in TLSs located within and at the periphery of the tumor, as well as in TLSs closely adjacent to the tumor parenchyma. These findings suggest that TLSs provide a protective niche to support the quiescence and maintenance of stem-like CD8 T cells in the tumor.


Assuntos
Neoplasias Pulmonares , Coriomeningite Linfocítica , Humanos , Animais , Camundongos , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/metabolismo , Linfócitos T CD8-Positivos , Vírus da Coriomeningite Linfocítica , Infecção Persistente , Neoplasias Pulmonares/metabolismo , Camundongos Endogâmicos C57BL
7.
J Cell Mol Med ; 27(20): 3157-3167, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37731199

RESUMO

Septic shock is a life-threatening clinical condition characterized by a robust immune inflammatory response to disseminated infection. Little is known about its impact on the transcriptome of distinct human tissues. To address this, we performed RNA sequencing of samples from the prefrontal cortex, hippocampus, heart, lung, kidney and colon of seven individuals who succumbed to sepsis and seven uninfected controls. We identified that the lungs and colon were the most affected organs. While gene activation dominated, strong inhibitory signals were also detected, particularly in the lungs. We found that septic shock is an extremely heterogeneous disease, not only when different individuals are investigated, but also when comparing different tissues of the same patient. However, several pathways, such as respiratory electron transport and other metabolic functions, revealed distinctive alterations, providing evidence that tissue specificity is a hallmark of sepsis. Strikingly, we found evident signals of accelerated ageing in our sepsis population.

9.
Front Immunol ; 14: 1185517, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37457727

RESUMO

Introduction: The Unfolded Protein Response, a mechanism triggered by the cell in response to Endoplasmic reticulum stress, is linked to inflammatory responses. Our aim was to identify novel Unfolded Protein Response-mechanisms that might be involved in triggering or perpetuating the inflammatory response carried out by the Intestinal Epithelial Cells in the context of Inflammatory Bowel Disease. Methods: We analyzed the transcriptional profile of human Intestinal Epithelial Cell lines treated with an Endoplasmic Reticulum stress inducer (thapsigargin) and/or proinflammatory stimuli. Several genes were further analyzed in colonic biopsies from Ulcerative Colitis patients and healthy controls. Lastly, we generated Caco-2 cells lacking HMGCS2 by CRISPR Cas-9 and analyzed the functional implications of its absence in Intestinal Epithelial Cells. Results: Exposure to a TLR ligand after thapsigargin treatment resulted in a powerful synergistic modulation of gene expression, which led us to identify new genes and pathways that could be involved in inflammatory responses linked to the Unfolded Protein Response. Key differentially expressed genes in the array also exhibited transcriptional alterations in colonic biopsies from active Ulcerative Colitis patients, including NKG2D ligands and the enzyme HMGCS2. Moreover, functional studies showed altered metabolic responses and epithelial barrier integrity in HMGCS2 deficient cell lines. Conclusion: We have identified new genes and pathways that are regulated by the Unfolded Protein Response in the context of Inflammatory Bowel Disease including HMGCS2, a gene involved in the metabolism of Short Chain Fatty Acids that may have an important role in intestinal inflammation linked to Endoplasmic Reticulum stress and the resolution of the epithelial damage.


Assuntos
Colite Ulcerativa , Doenças Inflamatórias Intestinais , Humanos , Colite Ulcerativa/patologia , Células CACO-2 , Tapsigargina , Estresse do Retículo Endoplasmático/genética , Doenças Inflamatórias Intestinais/metabolismo , Células Epiteliais/metabolismo , Hidroximetilglutaril-CoA Sintase
10.
J Immunol ; 211(5): 721-726, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37486206

RESUMO

CTL differentiation is controlled by the crosstalk of various transcription factors and epigenetic modulators. Uncovering this process is fundamental to improving immunotherapy and designing novel therapeutic approaches. In this study, we show that polycomb repressive complex 1 subunit chromobox (Cbx)4 favors effector CTL differentiation in a murine model. Cbx4 deficiency in CTLs induced a transcriptional signature of memory cells and increased the memory CTL population during acute viral infection. It has previously been shown that besides binding to H3K27me3 through its chromodomain, Cbx4 functions as a small ubiquitin-like modifier (SUMO) E3 ligase in a SUMO-interacting motifs (SIM)-dependent way. Overexpression of Cbx4 mutants in distinct domains showed that this protein regulates CTL differentiation primarily in an SIM-dependent way and partially through its chromodomain. Our data suggest a novel role of a polycomb group protein Cbx4 controlling CTL differentiation and indicated SUMOylation as a key molecular mechanism connected to chromatin modification in this process.


Assuntos
Complexo Repressor Polycomb 1 , Ubiquitina-Proteína Ligases , Animais , Camundongos , Linfócitos T CD8-Positivos/metabolismo , Diferenciação Celular , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
11.
Proc Natl Acad Sci U S A ; 120(21): e2217119120, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37186819

RESUMO

Occurrence of hyperglycemia upon infection is associated with worse clinical outcome in COVID-19 patients. However, it is still unknown whether SARS-CoV-2 directly triggers hyperglycemia. Herein, we interrogated whether and how SARS-CoV-2 causes hyperglycemia by infecting hepatocytes and increasing glucose production. We performed a retrospective cohort study including patients that were admitted at a hospital with suspicion of COVID-19. Clinical and laboratory data were collected from the chart records and daily blood glucose values were analyzed to test the hypothesis on whether COVID-19 was independently associated with hyperglycemia. Blood glucose was collected from a subgroup of nondiabetic patients to assess pancreatic hormones. Postmortem liver biopsies were collected to assess the presence of SARS-CoV-2 and its transporters in hepatocytes. In human hepatocytes, we studied the mechanistic bases of SARS-CoV-2 entrance and its gluconeogenic effect. SARS-CoV-2 infection was independently associated with hyperglycemia, regardless of diabetic history and beta cell function. We detected replicating viruses in human hepatocytes from postmortem liver biopsies and in primary hepatocytes. We found that SARS-CoV-2 variants infected human hepatocytes in vitro with different susceptibility. SARS-CoV-2 infection in hepatocytes yields the release of new infectious viral particles, though not causing cell damage. We showed that infected hepatocytes increase glucose production and this is associated with induction of PEPCK activity. Furthermore, our results demonstrate that SARS-CoV-2 entry in hepatocytes occurs partially through ACE2- and GRP78-dependent mechanisms. SARS-CoV-2 infects and replicates in hepatocytes and exerts a PEPCK-dependent gluconeogenic effect in these cells that potentially is a key cause of hyperglycemia in infected patients.


Assuntos
COVID-19 , Hiperglicemia , Humanos , COVID-19/complicações , SARS-CoV-2 , Gluconeogênese , Glicemia , Estudos Retrospectivos , Hepatócitos , Hiperglicemia/complicações , Glucose
12.
J Clin Invest ; 133(12)2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37104043

RESUMO

Patients with severe COVID-19 develop acute respiratory distress syndrome (ARDS) that may progress to cytokine storm syndrome, organ dysfunction, and death. Considering that complement component 5a (C5a), through its cellular receptor C5aR1, has potent proinflammatory actions and plays immunopathological roles in inflammatory diseases, we investigated whether the C5a/C5aR1 pathway could be involved in COVID-19 pathophysiology. C5a/C5aR1 signaling increased locally in the lung, especially in neutrophils of critically ill patients with COVID-19 compared with patients with influenza infection, as well as in the lung tissue of K18-hACE2 Tg mice (Tg mice) infected with SARS-CoV-2. Genetic and pharmacological inhibition of C5aR1 signaling ameliorated lung immunopathology in Tg-infected mice. Mechanistically, we found that C5aR1 signaling drives neutrophil extracellular traps-dependent (NETs-dependent) immunopathology. These data confirm the immunopathological role of C5a/C5aR1 signaling in COVID-19 and indicate that antagonists of C5aR1 could be useful for COVID-19 treatment.


Assuntos
COVID-19 , Armadilhas Extracelulares , Humanos , Animais , Camundongos , COVID-19/genética , COVID-19/patologia , Armadilhas Extracelulares/metabolismo , Tratamento Farmacológico da COVID-19 , SARS-CoV-2/metabolismo , Pulmão/patologia , Complemento C5a/genética , Complemento C5a/metabolismo
14.
Microorganisms ; 11(3)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36985226

RESUMO

Individuals infected with Leishmania (L.) chagasi may present different asymptomatic and symptomatic stages of infection, which vary in the clinical-immunological profiles that can be classified as asymptomatic infection (AI), subclinical resistant infection (SRI), indeterminate initial infection (III), subclinical oligosymptomatic infection (SOI), and symptomatic infection (SI) (=American visceral leishmaniasis, AVL). However, little is known about the molecular differences between individuals having each profile. Here, we performed whole-blood transcriptomic analyses of 56 infected individuals from Pará State (Brazilian Amazon), covering all five profiles. We then identified the gene signatures of each profile by comparing their transcriptome with those of 11 healthy individuals from the same area. Symptomatic individuals with SI (=AVL) and SOI profiles showed higher transcriptome perturbation when compared to those asymptomatic III, AI and SRI profiles, suggesting that disease severity may be associated with greater transcriptomic changes. Although the expression of many genes was altered on each profile, very few genes were shared among the profiles. This indicated that each profile has a unique gene signature. The innate immune system pathway was strongly activated only in asymptomatic AI and SRI profiles, suggesting the control of infection. In turn, pathways such as MHC Class II antigen presentation and NF-kB activation in B cells seemed to be specifically induced in symptomatic SI (=AVL) and SOI profiles. Moreover, cellular response to starvation was down-regulated in those symptomatic profiles. Overall, this study revealed five distinct transcriptional patterns associated to the clinical-immunological (symptomatic and asymptomatic) profiles of human L. (L.) chagasi-infection in the Brazilian Amazon.

15.
J Invest Dermatol ; 143(9): 1678-1688.e8, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36921684

RESUMO

Psoriasis is a chronic inflammatory skin disorder driven by the IL-23/type 3 immune response. However, molecular mechanisms sustaining the chronicity of inflammation and psoriatic lesions remain elusive. Combining systematic analyses of several transcriptomic datasets, we delineated gene signatures across human psoriatic skin, identifying S100A9 as one of the most up-regulated genes, which was confirmed in lesioned skin from patients with psoriasis and preclinical psoriasiform skin inflammation models. Genetic ablation or pharmacologic inhibition of S100A9 alleviated Aldara-induced skin inflammation. By single-cell mapping of human psoriatic skin and bone marrow chimeric mice experiments, we identified keratinocytes as the major source of S100A9. Mechanistically, S100A9 induced IL-23 production by dendritic cells, driving the IL-23/type 3 immunity in psoriasiform skin inflammation. In addition, the cutaneous IL-23/IL-17 axis induced epidermal S100A9 expression in human and experimental psoriasis. Thus, we showed an autoregulatory circuit between keratinocyte-derived S100A9 and IL-23/type 3 immunity during psoriasiform inflammation, identifying a crucial function of S100A9 in the chronification of psoriasis.


Assuntos
Psoríase , Humanos , Animais , Camundongos , Pele/patologia , Queratinócitos/metabolismo , Inflamação/patologia , Calgranulina B/genética , Interleucina-23/genética , Interleucina-23/metabolismo , Modelos Animais de Doenças
16.
Int J Mol Sci ; 24(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36902104

RESUMO

Sézary syndrome (SS) is a rare and aggressive type of cutaneous T-cell lymphoma, with an abnormal inflammatory response in affected skin. The cytokines IL-1B and IL-18, as key signaling molecules in the immune system, are produced in an inactive form and cleave to the active form by inflammasomes. In this study, we assessed the skin, serum, peripheral mononuclear blood cell (PBMC) and lymph-node samples of SS patients and control groups (healthy donors (HDs) and idiopathic erythroderma (IE) nodes) to investigate the inflammatory markers IL-1B and IL-18 at the protein and transcript expression levels, as potential markers of inflammasome activation. Our findings showed increased IL-1B and decreased IL-18 protein expression in the epidermis of SS patients; however, in the dermis layer, we detected increased IL-18 protein expression. In the lymph nodes of SS patients at advanced stages of the disease (N2/N3), we also detected an enhancement of IL-18 and a downregulation of IL-1B at the protein level. Moreover, the transcriptomic analysis of the SS and IE nodes confirmed the decreased expression of IL1B and NLRP3, whereas the pathway analysis indicated a further downregulation of IL1B-associated genes. Overall, the present findings showed compartmentalized expressions of IL-1B and IL-18 and provided the first evidence of their imbalance in patients with Sézary syndrome.


Assuntos
Interleucina-18 , Síndrome de Sézary , Neoplasias Cutâneas , Humanos , Dermatite Esfoliativa/metabolismo , Inflamassomos/metabolismo , Interleucina-18/genética , Interleucina-18/metabolismo , Leucócitos Mononucleares/metabolismo , Síndrome de Sézary/metabolismo , Pele/metabolismo , Neoplasias Cutâneas/metabolismo
17.
PLoS Negl Trop Dis ; 17(1): e0011037, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36608155

RESUMO

BACKGROUND: Chikungunya-fever (CHIKF) remains a public health major issue. It is clinically divided into three phases: acute, post-acute and chronic. Chronic cases correspond to 25-40% individuals and, though most of them are characterized by long-lasting arthralgia alone, many of them exhibit persistent or recurrent inflammatory signs that define post-Chikungunya chronic inflammatory joint disease (pCHIKV-CIJD). We aimed to identify early clinical markers of evolution to pCHIKV-CIJD during acute and post-acute phases. METHODOLOGY/PRINCIPAL FINDINGS: We studied a prospective cohort of CHIKF-confirmed volunteers with longitudinal clinical data collection from symptoms onset up to 90 days, including a 21-day visit (D21). Of 169 patients with CHIKF, 86 (50.9%) completed the follow-up, from whom 39 met clinical criteria for pCHIKV-CIJD (45.3%). The relative risk of chronification was higher in women compared to men (RR = 1.52; 95% CI = 1.15-1.99; FDR = 0.03). None of the symptoms or signs presented at D0 behaved as an early predictor of pCHIKV-CIJD, while being symptomatic at D21 was a risk factor for chronification (RR = 1.31; 95% CI = 1.09-1.55; FDR = 0.03). Significance was also observed for joint pain (RR = 1.35; 95% CI = 1.12-1.61; FDR = 0.02), reported edema (RR = 3.61; 95% CI = 1.44-9.06; FDR = 0.03), reported hand and/or feet small joints edema (RR = 4.22; 95% CI = 1.51-11.78; FDR = 0.02), and peri-articular edema observed during physical examination (RR = 2.89; 95% CI = 1.58-5.28; FDR = 0.002). Furthermore, patients with no findings in physical examination at D21 were at lower risk of chronic evolution (RR = 0.41, 95% CI = 0.24-0.70, FDR = 0.01). Twenty-nine pCHIKV-CIJD patients had abnormal articular ultrasonography (90.6% of the examined). The most common findings were synovitis (65.5%) and joint effusion (58.6%). CONCLUSION: This cohort has provided important insights into the prognostic evaluation of CHIKF. Symptomatic sub-acute disease is a relevant predictor of evolution to chronic arthritis with synovitis, drawing attention to joint pain, edema, multiple articular involvement including small hand and feet joints as risk factors for chronification beyond three months, especially in women. Future studies are needed to accomplish the identification of accurate and early biomarkers of poor clinical prognosis, which would allow better understanding of the disease's evolution and improve patients' management, modifying CHIKF burden on global public health.


Assuntos
Artrite , Febre de Chikungunya , Sinovite , Masculino , Humanos , Feminino , Febre de Chikungunya/complicações , Febre de Chikungunya/diagnóstico , Febre de Chikungunya/epidemiologia , Estudos Prospectivos , Brasil/epidemiologia , Artralgia/epidemiologia , Artralgia/etiologia , Biomarcadores , Doença Crônica
18.
J Med Virol ; 95(2): e28450, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36597912

RESUMO

Several perturbations in the number of peripheral blood leukocytes, such as neutrophilia and lymphopenia associated with Coronavirus disease 2019 (COVID-19) severity, point to systemic molecular cell cycle alterations during severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. However, the landscape of cell cycle alterations in COVID-19 remains primarily unexplored. Here, we performed an integrative systems immunology analysis of publicly available proteome and transcriptome data to characterize global changes in the cell cycle signature of COVID-19 patients. We found significantly enriched cell cycle-associated gene co-expression modules and an interconnected network of cell cycle-associated differentially expressed proteins (DEPs) and genes (DEGs) by integrating the molecular data of 1469 individuals (981 SARS-CoV-2 infected patients and 488 controls [either healthy controls or individuals with other respiratory illnesses]). Among these DEPs and DEGs are several cyclins, cell division cycles, cyclin-dependent kinases, and mini-chromosome maintenance proteins. COVID-19 patients partially shared the expression pattern of some cell cycle-associated genes with other respiratory illnesses but exhibited some specific differential features. Notably, the cell cycle signature predominated in the patients' blood leukocytes (B, T, and natural killer cells) and was associated with COVID-19 severity and disease trajectories. These results provide a unique global understanding of distinct alterations in cell cycle-associated molecules in COVID-19 patients, suggesting new putative pathways for therapeutic intervention.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Transcriptoma , Células Matadoras Naturais , Ciclo Celular
19.
Gastroenterol Hepatol ; 46(4): 322-328, 2023 Apr.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-35688395

RESUMO

Unfortunately, there is a gap of understanding in the pathophysiology of chronic liver disease due to the lack of experimental models that exactly mimic the human disease. Additionally, the diagnosis of patients is very poor due to the lack of biomarkers than can detect the disease in early stages. Thus, it is of utmost interest the generation of a multidisciplinary consortium from different countries with a direct translation. The present reports the meeting of the 2021 Iberoamerican Consortium for the study of liver Cirrhosis, held online, in October 2021. The meeting, was focused on the recent advancements in the field of chronic liver disease and cirrhosis with a specific focus on cell pathobiology and liver regeneration, molecular and cellular targets involved in non-alcoholic hepatic steatohepatitis, alcoholic liver disease (ALD), both ALD and western diet, and end-stage liver cirrhosis and hepatocellular carcinoma. In addition, the meeting highlighted recent advances in targeted novel technology (-omics) and opening therapeutic avenues in this field of research.


Assuntos
Hepatopatias Alcoólicas , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Humanos , Cirrose Hepática/etiologia , Hepatopatias Alcoólicas/terapia , Hepatopatia Gordurosa não Alcoólica/terapia , Hepatopatia Gordurosa não Alcoólica/patologia
20.
Angiogenesis ; 26(1): 129-166, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36183032

RESUMO

Cancer cells are embedded within the tissue and interact dynamically with its components during cancer progression. Understanding the contribution of cellular components within the tumor microenvironment is crucial for the success of therapeutic applications. Here, we reveal the presence of perivascular GFAP+/Plp1+ cells within the tumor microenvironment. Using in vivo inducible Cre/loxP mediated systems, we demonstrated that these cells derive from tissue-resident Schwann cells. Genetic ablation of endogenous Schwann cells slowed down tumor growth and angiogenesis. Schwann cell-specific depletion also induced a boost in the immune surveillance by increasing tumor-infiltrating anti-tumor lymphocytes, while reducing immune-suppressor cells. In humans, a retrospective in silico analysis of tumor biopsies revealed that increased expression of Schwann cell-related genes within melanoma was associated with improved survival. Collectively, our study suggests that Schwann cells regulate tumor progression, indicating that manipulation of Schwann cells may provide a valuable tool to improve cancer patients' outcomes.


Assuntos
Neoplasias , Neuroglia , Humanos , Estudos Retrospectivos , Neuroglia/metabolismo , Células de Schwann/metabolismo , Células de Schwann/patologia , Pericitos , Microambiente Tumoral/fisiologia , Neoplasias/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...